

 Find more at shortcuts.oreilly.com

ActionScript 3.0
Programming:
Overview, Getting Started, and
Examples of New Concepts
By Bill Sanders
Copyright © 2007 O'Reilly Media, Inc.
ISBN: 978-0-596-52923-9
Release Date: January 19, 2007

The release of ActionScript 3.0
represents the most significant change
in ActionScript since Flash was
introduced. With each new version of
Flash, developers and designers saw
incremental changes in ActionScript.
ActionScript 1.0 slowly grew with
each new version of Flash. Then
ActionScript 2.0 introduced user
classes stored in separate files and
the first inkling of a true object-
oriented programming language.
With ActionScript 3.0 is not only a
programming language for
developing object-oriented
applications, but the first major
implementation of ECMAScript E4,
the current Internet language
standard. This means that you’re not
just learning ActionScript 3.0, but
you’re also learning all the
ECMAScript–based languages to
come. Instead of being the language
just for Flash 9 and Flex 2,
ActionScript 3.0 is the language of the
Internet.

Contents
Packages and Classes 3

Jumping into Display Programming 7

Working with Movie Clips and Buttons 22

Basic Structures 45

Object-Oriented Programming.............. 59
Summary

This Short Cut is designed to get you up and running
with ActionScript 3.0 working with Flash 9, currently
available in pre-release version to registered Flash 8
users at:
http://labs.adobe.com/technologies/flash9as3preview/.

All cases of Example code can be downloaded at:
http://examples.oreilly.com/actionscript3qr.

The technical editor/reviewer was Darren Richardson.
Some of his work and insights into the Flash world can
be found on his blog at www.playfool.com &
www.experiment.org.uk.

You can email him at darren@actionscripts.co.uk.

http://www.experiment.org.uk/

Invitation to ActionScript 3.0
Depending on your orientation to Flash as either a designer or developer, or some
combination thereof, most who work with ActionScript create programs in one of
three styles.
First, designers tend to select a stage object (such as a button or movie clip) and
enter short scripts using the “on” function. For example, a designer might have a
button that moves a movie clip when pressed. Or she might have a movie clip
change shapes when a mouse moves over it. However, this method is no longer
available in ActionScript 3.0; throughout this Short Cut you will see how to
effectively create the same effects using other methods in ActionScript 3.0. I urge
designers to take a look at the Display Programming section (beginning on page
9). The investment in learning something about it will pay dividends far into the
future. ActionScript is moving forward at a fast pace, and professional Flash
developers need to move ahead as well.
Second, a number of Flash developers have been working with ActionScript as an
Internet language almost exclusively. They have become adept at creating scripts
using ActionScript 1.0 and 2.0 using the Actions panel in Flash. Scripts are placed
in frames and Rich Internet Applications (RIAs) are created for a wide variety of
applications. Most of the work is done in a style generally described as
“sequential” programming. This group does not have a formal background in
programming, but over the years their skills have increased along with the
sophistication of ActionScript.
Third, some developers have migrated to ActionScript from other object-oriented
programming (OOP) languages such as Java or C#. These developers will find the
new ActionScript very similar to what they are used to seeing in these other OOP
languages. Because ActionScript 3.0 closely follows the ECMAScript standards,
key differences can be found in the way variables are typed, and other features that
will differ in syntax but not in purpose from another OOP language. Many of the
packages in ActionScript 3.0 are unique to the Flash environment, but the structure
is very similar to what programmers have come to expect from other object-
oriented languages.
In addition to the three major categories of ActionScript users, I am sure others
with JavaScript, VB.NET, PHP and similar backgrounds have found their way to
ActionScript. Because ECMAScript was established as a general standard for
Internet languages, these other languages may begin a similar migration to meet
these standards. As a result, learning ActionScript 3.0 may simply be the step that
prepares you for learning the structures to which other languages may evolve. (For
a more detailed understanding of ActionScript 3.0, see Essential ActionScript 3.0

 ActionScript 3.0 Programming 2

by Colin Moock and ActionScript 3.0 Cookbook by Joey Lott, Darron Schall, and
Keith Peters, both from O’Reilly)

Packages and Classes
Probably the most important feature to grasp about ActionScript 3.0 is how to
work with packages and classes. In fact, your entire workflow initially rests on
your ability to recognize that you only deal with certain features of ActionScript at
any one time. For example, if you want to work with a text field, you have to first
import the TextField class from the flash.text package. Of course, you’ll
need to know that the TextField class is in the flash.text package, as well
as where other classes are stored. To get started, take a look at the script in
Example 1:
Example 1. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 public class ShowText extends Sprite
 {
 public function ShowText():void
 {
 var actionText:TextField=new TextField();
 var msg:String="Hello ActionScript 3.ohhhhh";
 actionText.text=msg;
 this.addChild(actionText);
 actionText.width=((msg.length)*12)+4;
 actionText.height=16;
 actionText.x=200;
 actionText.y=150;
 }
 }
}

Save the script as ShowText.as. To test this script, use the following steps:
1. Open a new Flash document, and in the Document class window in the

Properties panel, type in the class name, ShowText, as shown in Figure 1.
2. Save the Flash document as TextSimple.fla in the same folder as the

ShowText.as file.
3. Select Control → Test Movie (short cuts: PC = [Cntrl + Enter]; Mac = [Apple +

Return]), and in the middle of the page you’ll see the message
“ActionScript 3.ohhhhh”, as shown in Figure 1.

Before going on, understanding why you had to import the TextField and
Sprite classes is important. After all, writing a script in the Actions panel
requires no such import in previous versions of ActionScript. ActionScript 3.0 has
roughly 185 classes organized into 17 packages. In this particular application, only

 ActionScript 3.0 Programming 3

two of those 185 classes needed to be used, so instead of dragging along 183
unneeded classes, only the two required classes were imported.
To help understand the importance of importing only what you need, consider a
trip to Tahiti. When you start packing, you’ll take tropical weather clothing, your
swimsuit, and maybe a snorkel and diving mask for swimming with the fishes. Just
because you also have an Arctic-weather parka, snow shoes, and a portable heater
doesn’t mean you need to take them along, too. You also might take your laptop
computer, but you’re not going to try and pack your desktop computer. You just
pack what you need and will most efficiently allow you to travel lightly. That’s
exactly the same thing you’re doing with ActionScript 3.0 imports—you’re just
taking the classes you need. When your program runs, it does so far more
efficiently and faster and it won’t take up as much memory because you just
“packed” what was required—and nothing more.

Figure 1. The script is associated with the Flash document through the Document
class

Finding the Right Package and Class
In the most general sense you can think of a package as a class directory. If you
look in the flash.text package, for example, you’ll find classes like
TextField, TextFormat, and other related classes for doing stuff with text.
Table 1 lists the packages where classes are organized along with a brief
description of each.

 ActionScript 3.0 Programming 4

Table 1. ActionScript 3.0 Packages

Package Name Description
adobe.utils Used by Flash authoring tool developers
flash.accessibility Two accessibility classes
flash.display A key package for visual displays, containing 31

classes

flash.errors Part of Flash Player API and specific to
ActionScript

flash.events A wide variety of event classes for all events
you’ll use

flash.external A single class, ExternalInterface

flash.filters Allows dynamic addition of bitmap filters to
display objects

flash.geom Classes for supporting BitmapData class and
bitmap caching

flash.media Video, Sound, Camera, Microphone, and related
classes

flash.net Connection, stream-related and URL request
classes

flash.print Three classes related to printing
flash.profiler Single showRedrawRegions function

flash.system Classes to access system-level functionality
flash.text Text, Font, StyleSheet and related classes

flash.ui User interface classes including ContextMenu,
Keyboard and Mouse

flash.utils Includes functions, interfaces, and classes for wide
range of tasks such as setting and clearing
intervals, escaping and unescaping UTF-8 code,
getting class names and setting timers

flash.xml XML-related classes (XMLSocket class is in
flash.net package)

 ActionScript 3.0 Programming 5

The more you use ActionScript 3.0, the more you’ll become familiar with where
certain classes are located in the packages. When you fail to include the import
of a class or function, you’ll get an error message.. To see the kind of error an
omitted import generates, comment out the line that imports the TextField
class in Example 1; for example:
//import flash.text.TextField;

Figure 2 shows the compile errors generated when you test the application without
importing the TextField class first.

Figure 2. Compile errors due to missing class import from package

Another very nice feature in the Flash 9 Output window is the “Go to Source”
button. When clicked, it takes you to the source of the selected error. If the file
containing the error is not loaded, it automatically loads it for you.
In the workflow, you will find having the ActionScript 3.0 Language Reference
open while you work extremely useful. (The Reference comes with the preview
version of ActionScript 3.0 downloaded from
http://labs.adobe.com/technologies/flash9as3preview/) The top left column lists the
packages, and the bottom left columns lists all classes. If you click on a class you
want to import, the right column shows all the information for that class, including
properties, methods, constants and other information about the class. At the top it
shows the package path. For example, if you click the FileReference class,
you will see that the package path is flash.net.

 ActionScript 3.0 Programming 6

http://labs.adobe.com/technologies/flash9as3preview/

Using the wildcard (*) with packages
You’ll quickly learn that you can use the wildcard character, an asterisk (*),
instead of placing the name of the class in the import path. For example, instead
of writing the following:
import flash.display.Sprite;
you can use this to import the whole package instead:
import flash.display.*;
Doing so, especially with a package like display, defeats the purpose of only
importing the classes you need because it loads everything in the package.
However, while learning where everything is, you can save some time by using the
* wildcard. When developing your project, go ahead and use the wildcard, and
when you’re finished, go back and remove the wildcards and import only those
classes your application actually needs.
Another purpose behind specifying the exact classes and functions your script uses
is that the list of class imports tells you what’s going on in your script when you
come back to it at a later date. If you want to re-use the class you built, the
import list gives you a quick overview of your script when you want to use it
again. For example, if your script imports a Sprite (a Sprite is a basic display list
building block—sort of a MovieClip without the timeline), but your new class
needs a MovieClip class, you can quickly see that you’ll just have to change the
Sprite import to a MovieClip. Adding the * wildcard to the import statement
lets you import all of the classes in a package, sort of as a catch-all to help speed
up your development time. But keep in mind that that wildcard comes with a cost;
in this case, the wildcard character just tells you that you're importing all the
classes in the display package. Don't forget to go back and change those wildcards
to import only the classes your application uses, or else the wildcard will load
everything, which could potentially make your application take longer to load and
slower to run.

Jumping into Display Programming
For those of you who have worked with ActionScript in the past, chances are
you’ve used it to dynamically manipulate elements on the stage. The term display
programming refers to ActionScript 3.0’s ability to work with different elements
that appear on the stage. To effectively do so, you need to know something about
ActionScript 3.0’s display structure.
The first thing to know is that the Stage is the base container of the display
structure. As you add further containers to the stage, they are added to a display

 ActionScript 3.0 Programming 7

list. Each container can hold different display objects that appear on the screen. To
get started, you’ll see how to create an object container
(DisplayObjectContainer object) that’s placed on the stage, and then
you’ll place a Shape object into a container.
If you’ve had previous experience with Flash, you know that you can place objects
such as text fields, drawings, and even other movie clips into a MovieClip
object. However, ActionScript 3.0 has a new Sprite class that can hold other
objects in a similar way as the MovieClip class. Unlike the MovieClip class,
though, the Sprite class has no timeline. (In fact, the MovieClip is actually a
subclass of the Sprite class.) Without a timeline, the Sprite class requires less
memory and can be used as an ideal container for different objects while retaining
many of the advantages of a MovieClip object.
Take a look at Figure 3. It shows the script that created the square that appears on
the stage below the script. To reproduce this little application and help understand
how display programming works, implement the following steps:
1. Open a new Flash document and click on the first keyframe.
2. Open the Actions panel and enter the script shown in Figure 3.
3. Save the file and test it.

 ActionScript 3.0 Programming 8

Figure 3. Script to place a shape in a Sprite object on the stage

Now that you have a listing and a visual reference to display programming, you
can better understand its structure.
In Line 9, using the addChild() method, the Sprite instance named holder
is added to the Stage object’s base container. Next, the Shape instance (named
block) is added to the holder container, again using the addChild()
method. However, this time, the holder instance is the container and not the
stage. To specify a container, the addChild() method is simply added to the
container instance: holder.addChild(block). Using the x and y
coordinates for the center of the stage, the square is repositioned from the x=0,
y=0 in the upper-left corner. If you’re experienced with ActionScript, you will
notice that instead of using _x and _y for the horizontal and vertical positions, the
leading underscores have been removed from the property identifiers. (The stage’s
dimensions were the default width = 550, height = 400.)

 ActionScript 3.0 Programming 9

In a nutshell, that’s the display architecture. As each new container is added to the
stage or another container, it joins the display list. (You will note that a reference
to stage, with the lowercase first letter, refers to the place where you do your
drawings and place objects in different layers. A reference to Stage, with the
uppercase first letter, refers to the Stage class.) Figure 4 shows an abstract model
of the application in Figure 3 in terms of the display architecture.

Figure 4. Display architecture is made up of display object containers and the
display objects they contain

Now, just to see what happens, comment out the two import lines:
//import flash.display.Shape;

//import flash.display.Sprite;
Test the application again. If everything works fine, you won’t see a difference
from the first time you ran the application; here’s why: When you place script in a
keyframe on the timeline using the Actions panel, all of the packages are
automatically loaded. Your scripts are nowhere near as efficient because they are
hauling the overhead of unused packages and classes.
To employ the imports efficiently, you have to put them in a class of your own,
and call them from the Document class in the Flash document. (This technique is
employed in Example 1.) So, for a good deal of your code work, you’ll be using
ActionScript files (.as files) instead of typing code into the Actions panel.
Example 2 shows how your code should look when it is placed in a class. The class
name is ActionSquare, and the file should be saved as ActionSquare.as.
Example 2. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package

 ActionScript 3.0 Programming 10

{

import flash.display.Shape;

import flash.display.Sprite;

 public class ActionSquare extends Sprite

 {

 public function ActionSquare():void

 {

 var holder:Sprite=new Sprite();

 var block:Shape=new Shape();

 block.graphics.beginFill(0xcc0000);

 block.graphics.lineStyle(4,0x00cc00);

 block.graphics.drawRect(0,0, 150,150);

 block.graphics.endFill();

 addChild(holder);

 holder.addChild(block);

 holder.x=(550/2)-75;

 holder.y=(400/2)-75;

 }

 }

}

Remove the ActionScript from the frame, and in the Document class window of
the Properties panel, type in ActionSquare. Now when you test the script, even
though you will see exactly the same thing on the stage, you’ll know that it used
just the classes it needed. (Using the timeline, the SWF file is 545 bytes, while
using a class generates only 451 bytes—a 104-byte difference.)

Loading and Arranging Graphics
Now that you have a general idea of the display architecture and how to get display
items on the stage or in a container on the stage, you’ll find working with other
display objects clearer.
An important new feature of ActionScript 3.0 is the new Loader class. This class
lets you load external graphic or SWF files. (It replaces the MovieClipLoader
class from ActionScript 2.0.) For example, suppose you have a graphic for a logo
that you use frequently. The Loader instance lets you load the image into the
instance, and the instance name effectively becomes the object’s reference for
displaying it on the stage. Using a load() method and URLRequest instance to
target the logo’s image file, you can then place it anywhere you want in a
container.
Example 3 shows the process for setting up and positioning an image on the stage.
You can load GIF, JPEG, and PNG files. If you try to load other kinds of files,

 ActionScript 3.0 Programming 11

you’ll get an error message. This includes PSD (Photoshop) files that you can load
directly onto the stage in Flash 9 and are converted to a format that can be
displayed. Loader object becomes the container, and yet it can be treated as a
display object itself. Virtually all of the properties you would apply to a
MovieClip instance can be used with the Loader instance. Open an
ActionScript file and save the script shown in Example 3 as LogoLoader.as.
Example 3. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package

{

 import flash.display.Sprite;

 import flash.display.Loader;

 import flash.net.URLRequest;

 public class LogoLoader extends Sprite

 {

 public function LogoLoader():void

 {

 var logoLoader:Loader=new Loader();

 var logoup:URLRequest=new URLRequest("logo.gif");

 logoLoader.load(logoup);

 addChild(logoLoader);

 logoLoader.x=40;

 logoLoader.y=20;

 }

 }

}

Open a new Flash document, and in the Document class, type LogoLoader.
You can substitute logo.gif for any image file you have on hand; be sure to
place the image in the same folder where you have saved the LogoLoader.as
file.
When you test the script, you’ll see the image appear on the stage. The Loader
object can only have a single child display object: the file it loads. While the
Loader serves as a display object container, you cannot add more children to it
as you can a Sprite.
However, given the architecture of display programming in ActionScript 3.0, you
can add more than one image to the Stage or another container, not a Loader.
Further, you can order the depth of each image. As you add each child to a
container, the child is given a 0-based value incremented with each additional
child. The lower the value, the lower the image is in the container. So the first
image you place in a container is at the very back and the last is at the very top.

 ActionScript 3.0 Programming 12

To see how this works, Example 4 loads two images, but the second image needs
to load beneath the first image. To achieve that, the example uses the
addChildAt(imageRef, depth) method. Open a new ActionScript file and
enter the code shown in Example 4. Save the file as LogoLoaderAt.as and add
two graphic files to the same folder that represent the logo.gif and star.png
files.
Example 4. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.net.URLRequest;
 public class LogoLoaderAt extends Sprite
 {
 public function LogoLoaderAt():void
 {
 var starLoader:Loader=new Loader();
 var logoLoader:Loader=new Loader();
 var starup:URLRequest=new URLRequest("star.png");
 var logoup:URLRequest=new URLRequest("logo.gif");
 starLoader.load(starup);
 addChild(starLoader);
 logoLoader.load(logoup);
 addChildAt(logoLoader,0);
 logoLoader.x=40;
 logoLoader.y=20;
 starLoader.x=247;
 starLoader.y=75;
 }
 }
}

In a Flash document file, type in LogoLoaderAt in the Document class
window and test the application.
Figure 5 shows the results of the code shown in Example 3 (at left) and Example 4
(at right). It also shows what happens if addChild() instead of
addChildAt() were used in Example 4. The figure on the left shows the logo
with the star image hidden behind the palm tree because by default the first child
added has a lower depth. However, the figure on the right shows the star on top of
the palm tree because the script added the second figure, the logo, at a lower depth
(0). As such, the star image appears on top of the palm tree.

 ActionScript 3.0 Programming 13

Figure 5. Loaded images without (left) and with (right) depth control

For those of you who are primarily graphic designers, you should look at
ActionScript 3.0 as an opportunity to better control images created in other
applications. Also, keep in mind that you can still decorate the stage with vector
graphics created in Flash and position other graphics around them using
ActionScript 3.0.

Loading and Displaying Text
One of the most important features of ActionScript is its ability to dynamically
load text. Flash applications that load all text content at once not only lack
flexibility, but they also tend to be bloated and inefficient. Text is relatively
“light”; it doesn’t require many bytes. However, text within a SWF file can
become quite heavy and slow, so learning how to work with dynamically loaded
text is something that should be at the top of your list.
ActionScript 3.0 doesn’t use the Loader class for loading external text files; it
uses the URLLoader class instead. Moreover, the URLLoader is in the
flash.net package and not the flash.display package. One reason for this
difference is the content that loads with the loader class is placed into a
DisplayObjectContainer instance and text is placed into a TextField
instance. However, the TextField object is placed into a display container and
becomes part of the display list, the same as non-text objects.
Loading external text is a little more involved than loading graphic and SWF files.
For one thing, you need to use an event listener to determine when the text file has
completed loading, and only after the loading has completed can you place the text
into a TextField instance. As such, you’ll need to use an event listener that
signals (indicates with an Event.COMPLETE constant) when data are loaded and
ready to be placed into a text field.

 ActionScript 3.0 Programming 14

For this particular example, you’ll see how to use a class by referencing it from a
script in the timeline using the Actions panel. Then, you’ll see how to do the same
thing from a special file whose job it is to serve as a link between the class and the
Flash document’s Document class.
To get started, type in the script in Example 5 and save it as TextLoader.as.
Example 5. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.events.DataEvent;
 import flash.events.Event;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.text.TextField;
 import flash.text.TextFieldType;

 public class TextLoader extends Sprite
 {
 public function TextLoader(tfile:String):void
 {
 var txtLoader:URLLoader = new URLLoader();
 txtLoader.addEventListener(Event.COMPLETE,nowLoaded);
 var fileNow:URLRequest = new URLRequest(tfile);
 txtLoader.load(fileNow);
 }
 private function nowLoaded(event:Event):void
 {
 var loadCheck:URLLoader = URLLoader(event.target);
 var showText:TextField=new TextField();
 showText.width=300;
 showText.height=300;
 showText.type=TextFieldType.DYNAMIC;
 showText.multiline=true;
 showText.wordWrap=true;
 showText.text=loadCheck.data;
 this.addChild(showText);
 }
 }
}

The script consists of two key parts: the txtLoader function and the
nowLoaded function. The class constructor (TextLoader function) has a single
parameter, a string where the user places the name (URL) of the text field to be
loaded. Using an URLRequest instance, the text file is loaded. Using an event
listener, the URLLoader instance awaits the COMPLETE event, which is a
DataEvent constant. When the load is completed, the private function (one that
is visible only to references in the same class) fires the script that creates a text
field and places the loaded text (URLLoader instance data property) into the
text field. The addChild() function wraps up the process by displaying the text
field.

 ActionScript 3.0 Programming 15

This class has a level of abstraction that allows for greater flexibility in its
implementation. Because the constructor class provides a parameter, it’s easy to
use the script to add any text file you want. This class is accessed directly from the
Flash document using code placed on the timeline. Place the following script in the
timeline of a Flash document by selecting the first keyframe and adding the code to
the Actions panel:
var textLoad:TextLoader=new TextLoader("Schopenhauer.txt");
this.addChild(textLoad);
textLoad.x=100;
textLoad.y=100;

Name this file as TextLoader.fla and save it in the same folder as the
TextLoader.as file. Also, in the same folder, add a text file with any text
you’d like to add. For example, this script uses a reference to the following quote
saved in a text file:

Quote
The discovery of truth is prevented more effectively, not by the false appearance
things present and which mislead into error, not directly by weakness of the
reasoning powers, but by preconceived opinion, by prejudice.

—Arthur Schopenhauer

You can use any text file you want, but make sure you replace the string,
Schopenhauer.txt with the name of your text file.

In looking at the way in which the TextField instance is constructed the
following lines, describe the nature of the text field:
 showText.type=TextFieldType.DYNAMIC;
 showText.multiline=true;
 showText.wordWrap=true;

The TextField.type property is assigned one of two TextFieldType class
constants: DYNAMIC or INPUT. The class isn’t constructed as most are, but
instead acts like a property value. Also, when adding text files, you’ll want to set
the Boolean values to true for both the multiline and wordWrap properties
of the TextField class. The default TextField values are for a single line and
do not include automatically wrapping words to the next line.
Instead of using code generated in the timeline, you can avoid the unnecessary
package loading by simply having a reference to an implementation script. Often
saved as Main.as, this script can be used to implement a class you have built.
Essentially, the “main” class instantiates the elements of another class. Open a new
ActionScript file and add the following script:

 ActionScript 3.0 Programming 16

package
{
 import flash.display.Sprite;
 public class Main extends Sprite
 {
 public function Main():void
 {
 var textLoad:TextLoader=new TextLoader("Schopenhauer.txt");
 this.addChild(textLoad);
 textLoad.x=100;
 textLoad.y=100;
 }
 }
}

Save the script as Main.as and, in a new Flash document file, type Main in the
Document class window. When you test it, you’ll see exactly the same text
message as you did when you placed the script in timeline and wrote the code in
the Actions panel. In the example, we used the quote from Schopenhauer, and if
you used the Schopenhauer text in the first test, you’ll see it again. All that has
changed between the first and second examples is the method used to run the test.

Formatting text
When working with text fields, you’ll often want something other than the default
values for the TextField properties. For example, the wordWrap property is
set to false as is the multiline property. You may want to change those
values to true as well as other properties in that class. ActionScript 3.0 has a
TextFormat class very similar to that found in earlier versions of ActionScript.
However, some new wrinkles have been introduced to text formatting and are
worth examining.
The basics of formatting text in a text field center around the TextFormat class
and the StyleSheet class. This section examines the TextFormat class; the
next section examines HTML text, which is where you’ll see how the
StyleSheet class is used for formatting text.

The TextFormat class contains a number of properties to which you assign
values. Then, you assign the TextFormat instance to the TextField
instance to apply the format to all of the text in the TextField instance. Use the
TextField.defaultTextFormat property to assign a TextFormat
instance using the following format:

myTextField.defaultTextFormat=myTextFormat;

Example 6 shows a simple example of how to use the TextFormat class with the
TextField class. Also note the inclusion of the new TextFieldAutoSize
class. This new class is used to automatically set the size of the text field to

 ActionScript 3.0 Programming 17

accommodate the amount of text used. Open a new ActionScript file and enter the
code in Example 6. Save the file as Lady.as, and in a Flash document, type in
Lady as the Document class. When you test it, you should see the Dorothy Parker
quote in a red, 16-point Comic Sans MS font. The quotation dash in front of
“Dorothy Parker” is generated from the Unicode, \u2015. Using the same format,
you can add any Unicode symbols you need.
Example 6. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFormat;
 import flash.text.TextFieldAutoSize;

 public class Lady extends Sprite
 {
 public function Lady():void
 {
 var fourMore:String="My land is bare of chattering folk;\n";
 fourMore+="the clouds are low along the ridges\n";
 fourMore+="and sweet's the air with curly smoke,\n";
 fourMore+="from all my burning bridges.\n\n";
 fourMore+="\u2015Dorothy Parker";

 var ladyFormat:TextFormat=new TextFormat();
 ladyFormat.font="Comic Sans MS";
 ladyFormat.color=0xcc0000;
 ladyFormat.size=16;

 var ladyText:TextField=new TextField();
 ladyText.autoSize=TextFieldAutoSize.LEFT;
 ladyText.defaultTextFormat=ladyFormat;
 ladyText.text=fourMore;
 this.addChild(ladyText);
 ladyText.x=100;
 ladyText.y=90;
 }
 }
}

Unlike previous versions of ActionScript, the autoSize property is assigned a
TextFieldAutoSize constant. Also, the newline statement is no longer
used in ActionScript 3.0. Instead, to add a new line, use the \n escape character
embedded in the text string.

HTML text and style sheets
ActionScript 3.0 provides a subset of the Cascading Style Sheet (CSS) properties
used with setting styles in HTML. While it’s possible to apply CSS to HTML text,
only 13 CSS properties are available for use in ActionScript 3.0. Table 2 provides
a list of the usable CSS properties supported by ActionScript 3.0.

 ActionScript 3.0 Programming 18

Creating a StyleSheet instance in ActionScript 3.0 is different from the way it
was done in ActionScript 2.0. Different styles within a style sheet are created using
an Object instance, and each CSS property is assigned as a property of the
Object. For example, the following shows the process for setting up a CSS style
in ActionScript 3.0:
var poem:Object = new Object();
poem.textAlign = “center”;
poem.color = “#9900aa”;
poem.marginLeft=20;

The preceding code is equivalent to the following in CSS:
.poem {
 text-align: center;
 color: #9900aa;
 margin-left: 20pt;
}

Once you have set up one or more styles, you “load” the style sheet using the
StyleSheet.setStyle() method, as shown here:
var myStyleSheet:StyleSheet = new Style;
myStyle,setStyle(“.poem”, poem);

Finally, you apply the style sheet similar to the way you would when applying CSS
to an HTML page. Example 7 shows how to create all the different aspects of
ActionScript 3.0 CSS and apply them in a script.

 ActionScript 3.0 Programming 19

Table 2. Available CSS Properties for ActionScript 3.0

ActionScript CSS
Property

Possible Values

Color Hexadecimal only in the format #RRGGBB (e.g.,
#00aa33); color names are not acceptable

display inline, block, or none
fontFamily Name or comma-separated names of font (Arial Bold,

Verdana)
fontSize Number only, without unit specification (e.g., pt,

px)
fontStyle normal or italic
fontWeight normal or bold
kerning true or false (very limited, available only for

window-developed SWF files)
letterSpacing Number only, without unit specification
marginLeft Number only, without unit specification (e.g., pt, px)
marginRight Number only, without unit specification (e.g., pt, px)
textAlign left, center, right, or justify
textDecoration none or underline
textIndent Number only, without unit specification (e.g., em)

Open a new ActionScript file and add the script in Example 7. Save it as
Stylish.as. Next, open a new Flash document and save it as Stylish.fla
in the same folder. Type in Stylish in the Document class and test the script.
Example 7. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.StyleSheet
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class Stylish extends Sprite
 {
 public function Stylish():void
 {
 var selfReliance:StyleSheet=new StyleSheet();

 ActionScript 3.0 Programming 20

 var quote:Object=new Object();
 quote.color="#999999";
 quote.marginLeft=20;
 quote.fontSize=16;
 quote.textAlign="left";

 var signature:Object=new Object();
 signature.fontStyle="italic";
 signature.color ="#cc0000";
 signature.fontSize=16;
 signature.textIndent=30;

 var qStr:String="<body><p class='quote'>A foolish consistency ";
 qStr+="is the hobgoblin of little minds,\n";
 qStr+="adored by little statesmen and philosophers ";
 qStr+="and divines.\n";
 qStr+="With consistency a great soul has simply ";
 qStr+="nothing to do.</p>\n\n";
 qStr+="<p class='signature'>Ralph Waldo Emerson</p></body>"

 selfReliance.setStyle(".quote",quote);
 selfReliance.setStyle(".signature",signature);

 var waldo:TextField=new TextField();
 waldo.autoSize=TextFieldAutoSize.LEFT;
 waldo.styleSheet=selfReliance;
 waldo.htmlText=qStr;
 this.addChild(waldo);
 waldo.x=100;
 waldo.y=80;
 }
 }
}

When testing the script, you’ll see everything formatted as planned. Figure 6
shows how the CSS formatted the text. Were it not for the fact that you’ve seen the
code, you probably couldn’t tell the difference between using a StyleSheet and
HTML text and using a TextFormat instance with regular text.

 ActionScript 3.0 Programming 21

Figure 6. Text displayed using a StyleSheet and HTML text

Working with Movie Clips and Buttons
This section examines two familiar symbols in Flash: movie clips and buttons. As
you will see when working with ActionScript 3.0, you also have an option to work
with Sprite objects, of which MovieClip objects are a subclass. Likewise, you
will need to know something about a new class called SimpleButton to work
effectively with buttons. Both movie clips and buttons inherit a number of their
classes from the DisplayObject class, and in looking at the properties of both
classes, the inherited classes are listed as well.

MovieClip Objects
To get started, you have to re-orient your thinking about how movie clips created
on the stage are connected to ActionScript. Essentially, when you convert a
drawing into a MovieClip or Button, you are creating a class. The class name
is whatever you give for the Symbol Name.
When you create a movie clip using the drawing tools (instead of creating it using
ActionScript 3.0), the Symbol dialog box provides an “Export for ActionScript”
checkbox. When you enable that option, the Symbol Name appears in the Class
window, and the Base class shows the path to the class base. For example, Figure 8
shows what you would see if you name the symbol, Truck, and enable the “Export
for ActionScript” checkbox.

 ActionScript 3.0 Programming 22

Figure 8. Symbol names become class names for Movie clips and buttons

To work with movie clips created on the stage with drawing tools and ActionScript
3.0, let’s go through an example beginning with a drawing of a truck. After
completing the drawing and adding the necessary other parts, you’ll see how to
convert the MovieClip object into a class. To get started, follow these steps:

1. Open a new Flash document and save it as Truck.fla.

 ActionScript 3.0 Programming 23

 Using Figure 9 as a guide, draw the cab and the cargo box of the truck.
 Select the image and press the F8 key to transform the drawing into a Symbol.

Fill out the Symbol dialog box as shown in Figure 8.
 Double-click the image to enter the Symbol editor and add two layers, giving

your project three layers in total. Name the layer with the truck image, Truck,
another Wheel, and the third one Text. Order the layers from top to bottom,
Text, Truck, Wheel. Lock the Truck layer.

 Click the Wheel layer and draw a wheel. Select the wheel and press F8 to
convert it to a Movie clip Symbol, but do not select any of the Linkage
checkboxes.

 In the Name window, type in Wheel and click OK. Place the two wheel objects
beneath the truck as shown in Figure 9. Provide the instance name
wheel1_mc for the front wheel and wheel2_mc for the rear wheel.

 Click on the Text layer and add a dynamic text field over the cargo area of the
truck, as shown in Figure 9. Provide it with the instance name truck_txt in
the Properties panel. Lock the layer.

 Double-click on one of the Wheels to enter the Symbol edit mode. Add a layer
and name it Rotation, and name the original layer Wheel. Lock the Wheel layer.

 Draw four yellow lines over the tire as shown in Figure 9. Select the lines and
press F8 to convert it to a Symbol. In the Symbol dialog box, name the symbol
Rotate and select Movie clip as the Behavior. Click OK. Give the Rotate object
the instance name, rotate_mc.

 In the Wheel edit mode, add 30 frames to both layers. In the Rotation layer, add
keyframes to frames 7, 15, 22, and 30. Using the Free Transform tool, rotate the
image counter-clockwise (CCW) -90° in Frame 7, -180° in Frame 15, -270° in
Frame 22, and back to 0 degrees in Frame 30. Add Motion tweens to Frames 0,
7, 15, and 22.

 Return to the main stage and test the movie clip. The wheels should appear to
rotate. Remove the movie clip from the stage so that when you add the class
instance of the truck using ActionScript, you won’t have another truck object
already on the stage. The stage is now empty, but you should see three Movie
Clip symbols in the Library, as shown in Figure 9.

 ActionScript 3.0 Programming 24

Figure 9. Compound movie clip on stage (before removal) and movie clips in
Library

Before going on to look at some code, let’s consider the objects on the stage in
terms of coded elements. The actual Truck movie clip is really just a graphic—a
Sprite. The timeline is not used, so why make the class a MovieClip class and
load the extra code to deal with a timeline for truck? Essentially, the movie clip is a
container where we have placed a text field and a couple of other movie clips. So,
as a class, the movie clip really doesn’t need to be anything other than a Sprite.
You cannot create a Sprite on the stage. So you need to convert a MovieClip
into a Sprite by other means. Here’s how to do that:
1. Select the Truck icon in the Library panel.
2. Click the Information icon in the Library panel.
3. In the Base class window, change flash.display.MovieClip to
flash.display.Sprite, as shown in Figure 10.
4. Click OK.

 ActionScript 3.0 Programming 25

Figure 10. Converting a MovieClip to a Sprite

That’s all there is to it. The Truck movie clip is now a Sprite object. So, when it
comes time to writing a script that involves your Truck class, just know that it’s
a Sprite. To see how this works, open up a new ActionScript file and save it as
PlayTruck.as. Next, in the Document class of the Truck.fla file, type in
PlayTruck. Now type in the code shown in Example 8.

 ActionScript 3.0 Programming 26

Example 8. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class PlayTruck extends Sprite
 {
 public function PlayTruck():void
 {
 var javaTruck:Truck=new Truck();
 this.addChild(javaTruck);
 javaTruck.truck_txt.text="Drink Java!";
 //javaTruck.wheel1_mc.rotate_mc.visible=false;
 //javaTruck.wheel2_mc.stop();
 javaTruck.x=(stage.stageWidth/2)-(javaTruck.width/2);
 javaTruck.y=(stage.stageHeight/2)-(javaTruck.height/2);
 }
 }
}

Test the script. You should see the truck figure in the center of the stage with the
wheels spinning with the message, “Drink Java!,” displayed on the side of the
truck.
The important aspect of this example is that the Truck class is treated just like
any other class, and the text area is addressable as a property of a Truck class
instance. Keeping in mind that the original Truck movie clip was an extension of
the MovieClip class but changed to a Spite extension, you can see that
everything works as expected.
By adding the commented-out lines to the script, you will see that you can control
the Wheel movie clip’s properties and methods as well. Remove the comment
operators (//) from the following two lines:
//javaTruck.wheel1_mc.rotate_mc.visible=false;
//javaTruck.wheel2_mc.stop();

Now when you test the movie, the rotation lines are invisible on the front wheel,
and the rear wheel rotation lines are visible, but have stopped moving.
As you can see, you can create all of the display items you want on the stage,
nesting them as deep as you want. Then, by assigning the top-level symbol a class
status, you can access all of the properties and methods contained in that class.
You can assign a base class as either a MovieClip (default) or as a Sprite.
Of course, you can code your own movie clip without using the Flash IDE tools. In
the context of using ActionScript, that’s pretty easy. You can dynamically add text
or graphics by coding shapes and text fields right into a class that extends the
MovieClip class. However, unless you need the timeline, you’re better off
coding text fields and shapes in a Sprite object, as you saw earlier in Figure 3.

 ActionScript 3.0 Programming 27

When working with MovieClip properties, you have to work with MovieClip
properties as well as the properties it inherits. Because many of the names have
changed in the property names, take a look at Table 3 for an overview of the
MovieClip’s properties and those properties it has inherited.
Table 3. MovieClip Properties and Inherited Properties

Property Data Type Function
accessibilityProperties AccessibilityProperties Display object’s

current accessibility
options

alpha Number Opaque level
(obversely,
transparency level)

blendMode String BlendMode class
value expressed as
a constant

buttonMode Boolean Button mode on or
off

cacheAsBitmap Boolean Flash Player caches
an internal bitmap
representation of
the display object if
set to true

constructor Object Reference for class
if object is class
instance; otherwise,
the reference for
constructor function
for a given object
instance.

contextMenu ContextMenu Objects’ associated
context menu

currentFrame int Playhead’s current
frame number
(read-only)

 ActionScript 3.0 Programming 28

currentLabel String Playhead’s current
frame label (read-
only)

currentLabels Array Scene’s label array.
(read-only)

currentScene Scene MovieClip
instance’s current
scene (read-only)

doubleClickEnabled Boolean Object receives
doubleClick
event

dropTarget DisplayObject Target
DisplayObject
where sprite is
dropped or dragged

enabled Boolean MovieClip
instance is enabled
if true

filters Array Filter object’s
indexed array,
currently associated
with the display
object

focusRect Object Null value indicates
object obeys
stageFocusRec
t property

framesLoaded int Current number of
frames loaded in
SWF file (read-
only)

graphics Graphics Associated with
Graphics object
that, belonging to
this Sprite, allows
vector drawing to
take place

 ActionScript 3.0 Programming 29

height Number DisplayObjec’s
height

hitArea Sprite Specify another
Sprite as the hit
area for Sprite

loaderInfo LoaderInfo Obtains information
about display
object’s file being
loaded

mask DisplayObject Request to use the
called object as a
mask to calling
object

mouseChildren Boolean Returns true if
children of the
object are mouse
enabled

mouseEnabled Boolean Returns true if
this object receives
mouse messages

mouseX Number Mouse x coordinate
mouseY Number Mouse y coordinate
name String DisplayObjec’s

instance name
numChildren int Object’s number of

children
opaqueBackground Object Indicates opaque

display and
background color

parent
DisplayObjectContainer

Reference to
container object
containing display
object

 ActionScript 3.0 Programming 30

prototype Object Class or function
object’s prototype
reference

root DisplayObject Root of loaded
SWF file owning
DisplayObject

rotation Number Rotation value (0-
360)

scale9Grid Rectangle Scaling grid
currently in effect

scaleX Number Horizontal percent
of
DisplayObject

scaleY Number Vertical percent of
DisplayObject

scenes Array Scene array with
name, total number
of frames, and
scene and frame
names for
MovieClip’s
scene (read-only)

scrollRect Rectangle Boundary of a
display object’s
scroll rectangle

soundTransform SoundTransform Sound controls in
this Sprite

stage Stage Display object’s
stage

tabChildren Boolean true if display
object’s children
are tab enabled

tabEnabled Boolean true if object is
tab enabled

 ActionScript 3.0 Programming 31

tabIndex int Tab order in SWF
file

textSnapshot TextSnapshot TextSnapshot
object of current
DisplayObject
Container
instance

totalFrames int Total number of
frames in the movie
clip instance (read-
only)

trackAsMenu Boolean true means that
SimpleButton
or MovieClip
objects are able to
get mouse release
events

transform Transform Object properties
with display
object’s matrix,
color transform,
and pixel bounds

useHandCursor Boolean true enables hand
cursor appearance
when the mouse
rolls over a sprite
with buttonMode
set to true

visible Boolean false hides object
width Number DisplayObject

’s width
x Number DisplayObject

’s x coordinate
y Number DisplayObject

’s y coordinate

 ActionScript 3.0 Programming 32

Scripting sprite classes
You can dynamically create movie clips using ActionScript, but because you
cannot dynamically script in frames and keyframes, most of what you will be
doing with objects created with ActionScript 3.0 will be with Sprites. If there’s no
reason for the overhead in a timeline, then use a Sprite instead of a
MovieClip.

One of the more important features of Flash is the ability to drag MovieClip
instances. However, the same thing can now be done with Sprite objects. A
common use of the Sprite object is for creating a slider control. By sliding a
movie clip and tracking the horizontal or vertical position, it’s possible to change
the properties of other objects, such as the volume level in a sound application. To
accomplish this, you’ll need to do the following:
1. Create a “groove” line. This is a shape that indicates where the slider may slide.

This is easy because all you have to do is generate a line. With ActionScript
3.0, this can be done with a Shape object and graphic drawing methods found
in the flash.display.Graphics package.

2. Create a “lever” Sprite object. This requires that the script draw the lever; a
rounded rectangle created with the drawRoundRect() graphic drawing
method will take care of that.

3. Finally, an event handler needs to be added to the lever object so it can be
moved along the groove line. The startDrag() method has changed from
earlier versions of ActionScript, so you’ll need a Rectangle instance from
the flash.geom package instead. The new startDrag() has the format,
startDrag(lockCenter:Boolean, bounds:Rectangle);
To specify the bounds, create a Rectangle instance defining the allowable
area where the lever can be dragged. Since the groove line is a 1-pixel high
“rectangle,” you’ll need to define the rectangle as one with the width and height
of the groove line.

Everything you need is in Example 9. Note that the script imports four different
classes. The use of both private variables and functions exposes those variables and
functions only to the class they are in.
Example 9. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.display.Shape;
 import flash.events.MouseEvent;
 import flash.geom.Rectangle;

 public class Slider extends Sprite

 ActionScript 3.0 Programming 33

 {
 private var posx:uint=200;
 private var posy:uint=100;

 public function Slider():void
 {
 doGroove();
 doLever();
 }

 private function doGroove():void
 {
 var groove:Shape =new Shape();
 groove.graphics.lineStyle(1,0x000000);
 groove.graphics.moveTo(10,100);
 groove.graphics.lineTo(210,100);
 addChild(groove);
 groove.x=posx;
 groove.y=posy;
 }
 private function doLever():void
 {
 var lever:Sprite =new Sprite();
 lever.graphics.beginFill(0xccccccc);
 lever.graphics.lineStyle(2,0xaaaaaa);
 lever.graphics.drawRoundRect(10,80,10,40,6);
 lever.graphics.endFill();
 addChild(lever);
 lever.x=posx;
 lever.y=posy;

 function startLever(event:MouseEvent):void
 {
 var dragRec:Rectangle=new Rectangle(posx,posy,200,0);
 lever.startDrag(false,dragRec);
 trace(Math.round((lever.x-posx)/2));
 }
 lever.addEventListener(MouseEvent.MOUSE_DOWN,startLever);

 function stopLever(event:MouseEvent):void
 {
 lever.stopDrag();
 trace(Math.round((lever.x-posx)/2));
 }
 lever.addEventListener(MouseEvent.MOUSE_UP,stopLever);
 }
 }
}

The following steps show what you need to do:
1. Get started by opening a new Flash document and saving it as Slider.fla.
 Next, open an ActionScript file and save it as Slider.as in the same folder

as Slider.fla.
 Type in the code in Example 9, and save it as Slider.as.

 ActionScript 3.0 Programming 34

 Finally, type in Slider as the Document class in the Slider.fla
Properties panel.

When you test the application, you should see values from 0-100 in the Output
window as you move the slider from left to right. You can change that range to
whatever you want by working with the base value of 200, the number of pixels
that the sliding lever can traverse. Figure 12 shows what you will see when you
test the application.

Figure 12. Slider application made of Sprite and Shape instances generating
position values

Buttons
Like MovieClip and Sprite objects, you can draw buttons on the stage and
convert them to symbols and then reference them as a class. The base class for a
button object is the SimpleButton class. If you’re familiar with the buttons you
create on the stage, you will be somewhat familiar with this new class. However,
using ActionScript 3.0, you can do far more in terms of creating your own buttons.
To get started, though, create a button on the stage:
1. Open a new Flash document and save it as GoButton.fla.

 ActionScript 3.0 Programming 35

2. Using the Oval tool, draw a 36-pixel circle using two different colors for the fill
and stroke; set the stroke width to 2.25 pixels.

3. Select the circle and press the F8 key to open the Convert to Symbol dialog
box. Type in GoButton for the Name and select Button as the type, as shown
in Figure 11.

4. Enable the “Export for ActionScript” checkbox in the Linkage group. The class
name GoButton appears and the Base class is listed as
flash.display.SimpleButton, as shown in Figure 11.

5. Click OK.
6. Remove the button from the stage. Select the button in the Library panel and

right-click (Control-click on the Mac) the icon. Select Edit from the Context
menu.

7. Select the Over, Down, and Hit frames in turn and press F6 to insert a keyframe
for each. Click the Over frame and reverse the fill and stroke colors. Click the
Down frame and change the fill color to a color other than the current one.
Click the Hit frame and draw an oval or rounded rectangle to cover the button
and about 50 pixels to the right of the button. (This gives the button an extended
hit area to the right.) Click the Scene 1 icon to exit the Symbol Edit mode.

 ActionScript 3.0 Programming 36

Figure 11. Creating a SimpleButton class

8. Open the Properties panel and type in ButtonWork, which is the name of the
class that places the buttons on the stage.

9. Open a new ActionScript file and save it as ButtonWork.as in the same
folder as the Flash document file, GoButton.fla.

10. Add the script shown in Example 10 and save the file.

 ActionScript 3.0 Programming 37

Example 10. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class ButtonWork extends Sprite
 {
 public function ButtonWork():void
 {
 var navBtn1:GoButton=new GoButton();
 var navBtn2:GoButton=new GoButton();
 var navBtn3:GoButton=new GoButton();

 this.addChild(navBtn1);
 this.addChild(navBtn2);
 this.addChild(navBtn3);

 navBtn1.x=100;
 navBtn2.x=100;
 navBtn3.x=100;

 navBtn1.y=100;
 navBtn2.y=150;
 navBtn3.y=200;

 }
 }
}

When you save the file and test it, you’ll see three buttons on the stage lined up
vertically. Now you know how to create a button using the Flash tools and use
ActionScript 3.0 to place multiple instances of it on the stage. To make the button
work, though, you’ll need to add event listeners so the button will do something
when it’s clicked or rolled over. Keep the button class you just created because
you’ll need to see how to connect it to a mouse event in the next section.

Connecting events to your buttons
To understand events in ActionScript 3.0, assume as little as possible about using
events in previous versions of ActionScript. Not surprisingly, you have a package
that contains the different events you’ll be using, flash.events. So whenever
you use an event (which is often), be sure to remember to import the necessary
flash.events package and the specific class. ActionScript 3.0 has 21 different
event classes, and most of these classes contain event constants that reference a
particular event. When using any class with an event, the following shows the
general format:
objectInstance.addEventListener(EventClass.EVENT_CONSTANT, eventHandler);

For example, the following shows how a button can be linked to a mouse event:
myButton.addEventListener(MouseEvent.CLICK, moveMC);

 ActionScript 3.0 Programming 38

The button instance named myButton adds the mouse CLICK listener to itself. A
function named moveMC does something when the mouse is clicked while over the
button instance. (Effectively, this works as a button click.) To see how this works,
let’s make some changes to the script shown in Example 10. Example 11 shows the
changes; just add the new code to the ButtonWorks.as file, then save and test
the code. (The added code is in bold.)
Example 11. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.events.MouseEvent;
 import flash.display.Sprite;
 public class ButtonWork extends Sprite
 {
 public function ButtonWork():void
 {
 var navBtn1:GoButton=new GoButton();
 var navBtn2:GoButton=new GoButton();
 var navBtn3:GoButton=new GoButton();

 this.addChild(navBtn1);
 this.addChild(navBtn2);
 this.addChild(navBtn3);

 navBtn1.x=100;
 navBtn2.x=100;
 navBtn3.x=100;

 navBtn1.y=100;
 navBtn2.y=150;
 navBtn3.y=200;

 navBtn1.addEventListener(MouseEvent.CLICK,jump);
 navBtn3.addEventListener(MouseEvent.CLICK,back);
 function jump():void
 {
 navBtn2.x+= 5;
 }
 function back():void
 {
 navBtn2.x+= -5;
 }

 }
 }
}

When you make the changes, be sure to add the line that imports the
MouseEvent class to the file. This script moves the middle button to the left and
right, but the click-handling function can do anything you want it to.
Aside from reading the CLICK event with a mouse, several other constants can be
associated with the MouseEvent class. Table 4 lists the events that can be read
by an object with an event listener associated with the MouseEvent class.

 ActionScript 3.0 Programming 39

Table 4. MouseEvent class Constants

Constant Name Event
CLICK Mouse button is pressed and released (the left button on two-

button mouse)
DOUBLE_CLICK Mouse button is pressed twice in quick succession
MOUSE_DOWN Mouse button is held down
MOUSE_MOVE Mouse is currently changing positions
MOUSE_OUT Mouse has moved the over position to a position no longer over

the object
MOUSE_OVER Mouse position is over the target, including the entire hit area

of a button
MOUSE_UP Mouse button has been down and this event is after it returns to

the up position
MOUSE_WHEEL Mouse wheel is rotated over target
ROLL_OUT Moving mouse leaves target
ROLL_OVER Moving mouse is over target

To get an idea of how the different mouse events work, simply change the event
constants in Example 11. For example, change CLICK to ROLL_OVER on one of
the buttons and notice the result you get.

Scripting a simplebutton
Unlike the MovieClip class, where you cannot add frames and keyframes, the
new SimpleButton class can be used to create fairly robust buttons. As you will
see, such buttons can have their own dynamic text and reaction to the mouse. In
developing buttons using ActionScript, you need to consider the following
elements:
1. What is the shape of your button? Will it be round, oval, rectangular, or some

other shape? What Shape or Sprite properties will you need?
2. Will your button require a text label? Will the text be dynamic or static? Should

the user have the option of using the same class with different text?
3. What kind of events will be used with the button?
4. Which states will you use? (See Table 5 for the SimpleButton properties.)
You may wonder, why bother with scripting a button when you can easily draw
one on the stage? The answer is that you can control more aspects of a button when
it’s written with code. Furthermore, as a class, once you’ve spent time creating the

 ActionScript 3.0 Programming 40

button, you can reuse the class all you want, changing details of the code to change
characteristics of the button.
Before looking at an example for creating and using a scripted button, review
Table 5 and take a look at all of the properties you can control directly in
ActionScript 3.0.
Table 5. SimpleButton Properties

Property Characteristics
downstate Button is pressed down
enabled Button is ready to use if true
hitTestState Display object used as “live” area of button. May be a

different size and shape than visible aspects of button.
overState State when mouse is over button hit area
soundTransform SoundTransform object connected to button
trackAsMenu Boolean indicating display object can receive mouse release

events
upState State when mouse has been held down and then released or

simply is not held down
useHandCursor A Boolean value of true displays the hand cursor;

false displays the arrow cursor

Example 12 shows a fairly robust button. However, the button is created without
any events connected to it—concretely or abstractly. In part this simplifies matters,
but more importantly, as you will see in Example 13, it allows greater flexibility
when using the button class. Example 12 shows you how to build the button as an
entity you can place in your application; Example 13 shows how you can flexibly
place the button instances, uniquely label each instance, and set up an event for
each instance.
Open a new ActionScript file and save it as FlashBtn.as. Then enter and save
the script shown in Example 12.
Example 12. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.display.SimpleButton;
 import flash.display.Shape;
 import flash.text.TextFormat;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 ActionScript 3.0 Programming 41

 public class FlashBtn extends SimpleButton
 {
 public function FlashBtn(txt:String)
 {
 upState = new BtnState(0xfff56d, txt);
 downState = new BtnState(0xfff222, txt);
 overState= new BtnState (0xfff000,txt);
 hitTestState=upState;
 useHandCursor=true;
 }
 }
 class BtnState extends Sprite
 {
 private var btnLabel:TextField;
 public function BtnState(color:uint,btnLabelText:String):void
 {
 //Text field for button
 btnLabel = new TextField();
 btnLabel.text=btnLabelText;
 btnLabel.autoSize=TextFieldAutoSize.LEFT;
 //Text format for text field
 var format:TextFormat = new TextFormat("Verdana");
 format.size=12;
 btnLabel.setTextFormat(format);
 var btnWidth:Number=btnLabel.textWidth + 10;
 //Shape for button background
 var bkground:Shape = new Shape();
 bkground.graphics.beginFill(color);
 bkground.graphics.lineStyle(2,0xf3c716);
 bkground.graphics.drawRect(0,0,btnWidth,18);
 addChild(bkground);
 addChild(btnLabel);
 }
 }
}

As usual, your first order of business is to make sure that you import all of the
packages and classes you need. Note that the script does not import any
flash.events classes because the script that is building the button is not using
them. In subsequent scripts that employ the button, flash.events will be
employed and the import will occur in those scripts. However, be sure to get the
necessary classes for the text objects and drawings you will be creating along with
the SimpleButton class so you can use its properties in the script.

Note that the FlashBtn class extends SimpleButton. Therefore, you can
assign values to the different SimpleButton properties (shown in Table 5)
without having to declare them. In fact, the constructor for the class simply assigns
five of the SimpleButton property values.

The second class (which can be treated as a private class, BtnState), is a
Sprite extension that’s made up of the display characteristics for the button.
First, a text field and text format is added, and then a Shape draws a rectangle that
defines the button’s shape. The background image and text are then assigned as

 ActionScript 3.0 Programming 42

values to the different states in the constructor function. The constructor function,
used to instantiate class objects, can be identified by having the same as the class
it’s in. (In this case, the constructor function is FlashBtn.) Color values are
inserted as arguments, and so you can change them to any color you want for the
different button states.
The background is made up of the rectangle and the text field is added to the stage
using the addChild() function. The order of the two addChild() functions is
important. The text must be visible on top of the graphic, so it is placed second in
the order—at a higher level. Otherwise, the graphic would block the text in the text
field. (Switch the order of the addChild() functions and you won’t see any text
when you test the button script using the code in Example 13.)
Example 13simply implements the buttons with unique labels and shows how the
buttons can be connected to a mouse event. Open a new ActionScript file and save
it as ShowBtn.as in the same folder as the FlashBtn.as file. Then open a
new Flash document file, enter ShowBtn in the Document class window in the
Properties panel and save it as ShowBtn.fla (again, in the same folder as both
the FlashBtn.as and ShowBtn.as files). Finally, in the ShowBtn.as file,
enter and save the code in Example 13.
Example 13. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package

{

 import flash.display.Sprite;

 import flash.events.MouseEvent;

 public class ShowBtn extends Sprite

 {

 public function ShowBtn():void

 {

 var btnProducts:FlashBtn=new FlashBtn("Products");

 var btnServices:FlashBtn=new FlashBtn("Services");

 var btnContact:FlashBtn=new FlashBtn("Contact Us");

 this.addChild(btnProducts);

 this.addChild(btnServices);

 this.addChild(btnContact);

 btnProducts.x=100;

 btnProducts.y=100;

 ActionScript 3.0 Programming 43

 btnServices.x=100;

 btnServices.y=150;

 btnContact.x=100;

 btnContact.y=200;

 //Add Event to a button

 function prods():void

 {

 trace("Products selected");

 }

 btnProducts.addEventListener(MouseEvent.CLICK,prods);

 }

 }

}

When you test the application, you’ll see three buttons, each with a different label
and a width relative to the amount of text in each. When you click the Products
button, the Output window shows the message, “Products selected,” as shown in
Figure 13.

 ActionScript 3.0 Programming 44

Figure 13. Custom buttons created using ActionScript 3.0

To help you better understand the relationship between the buttons and events, try
adding event handlers to the other two buttons. Better yet, change the labels to
ones you may be using in your own applications.

Basic Structures
Now that you’ve had a crash course in display programming, you’ll be happy to
know that the basic structures in ActionScript 3.0 are very similar to earlier
versions of ActionScript. Classes are handled differently, but if you’re familiar
with the way classes are used in ActionScript 2.0, you won’t find too many
differences. These structures are reviewed in this section along with a discussion of
the different attributes associated with classes, variables and functions.
Understanding these relationships is important for working successfully in object-
oriented programming (OOP), the topic of the next section.
To get you started, we’ll review data types and then classes and their attributes,
along with how the different attributes work in different contexts. Let’s start by
reviewing data types.

Data Types
To successfully work with ActionScript 3.0, you need to use data types extensively
and correctly. Data types are declared in ActionScript 3.0 by placing a colon before
the data type and after the variable or constant name, as shown here:

 ActionScript 3.0 Programming 45

var total:Number;

const WARNING:String=”Please enter your email address”;

var strSize: uint = mystring.length;
With functions, the same rule applies except that the colon follows the parenthesis
after a function’s name. The data type refers to the return type, if any return
statement is used. If no return statement is used, the data type is void. The
following illustrates how to use data types with functions:
function getNumber() : Number
{
 return total + tax + shipping;
}
function startPlay(): void
{
 trace(“I’m playing”);
}

Most data types are capitalized, such as String, Object, and Array as well as
class names. However, ActionScript 3.0 has some lowercase data types. Both
signed and unsigned integers data types, int and uint, are lowercase, as is
void.

If you’re accustomed to ActionScript 2.0 where Void is capitalized, you have
to remember this important change; otherwise you’ll get an error message. In
ActionScript 3.0, it’s void not Void.

Making Classes
At this point, you’ve seen several different user classes constructed in the
examples, so by now, they’re not a total mystery. However, none of their attributes
were discussed in any detail and the process was shown more than explained. So,
here we’ll start by going over the basics.
The first step in creating a class is planning. An old saying of “Measure twice, cut
once,” certainly holds true. That summarizes the whole idea of planning a class.
The planning process involves what you want your class to achieve and which
parts will make up your class. So what do you plan for? The following list shows
what you must consider before you start pounding away on the keyboard to create
an application:
Task to achieve

Without knowing exactly what you want your class to achieve, you cannot even
begin to plan. So the first thing you want to ask yourself is “What is this class
going to accomplish?” It can be anything from creating a button for use in
multiple applications, or a very specific task for a single application, such as
sending text to a text field inside a movie clip. Write the task down on a piece

 ActionScript 3.0 Programming 46

of paper. It’s also easier to scribble down ideas and re-arrange them until you
have your task clearly defined.

Component parts required
Whether you’re building a house or baking a cake, you plan for the tools and
the ingredients. The tools (hammer, saw, mixer, whisk) are something like the
methods and the ingredients (wood, dry wall, flour, baking soda) are analogous
to the properties. If you’re working on a video application class, you’re going to
have to think about methods for turning the video on and off, and properties
such as placing the video object on the stage and sizing it correctly. So grab a
pen or pencil and some note paperWrite down the parts list.

Package and class list
Once you’ve decided on the parts you’re going to need, prepare a list of
packages you will need to import. Generally, this begins with the package
keyword followed by a series of import statements that serve to gather up all
of your packages and classes. All of this is automatic using older versions of
ActionScript with your script in the timeline associated with a keyframe.
However, that practice is extremely wasteful and needlessly overloads your
code with packages you’ll never use. So when you prepare your list, you are not
only creating more efficient code and ultimately a better application, you’re
also organizing your class elements.

Declare your class and extension, if any
For display programming, your class needs to extend the Sprite class (at a
minimum) for display on the stage. Other classes, including those that may be
supporting classes, may not need to extend any other class.

Build your constructor
To implement your class, you need a class constructor, created using a public
function with the same name as your class.

Add your methods and properties
These are the tools and parts (or ingredients). Just remember that methods are
functions and properties are variables or objects.

These steps and considerations represent everything you’ll need to create a simple
class, but they also serve as the bedrock of what you will be doing with
ActionScript 3.0 and classes. A reference to a “user” class simply distinguishes it
from a “built-in” class that is part of a package.

Basic class
To see the basics of how to create a class, let’s make a simple one that sends a
message to the screen using a text field. As you will see, this example is different
from Example 1, in which a script placed a text message on the screen. It is an
example of OOP, which is discussed in the next section. The primary feature of the

 ActionScript 3.0 Programming 47

class built in Example 14 (SetGet) is that it is abstract. The abstract quality
stems from the encapsulated character of the references. For example, in the
constructor function (SetGet) the setWord(myword) function is encapsulated
in that it is made up of hidden details. The setWord() function is a reference to a
private static function in a different part of the program outside of the constructor
function. The myword parameter is passed from an attribute in the constructor, but
none of the details are visible. Also, you will notice that the private and
static attributes are used in the SetGet class, which are explained along with
Example 14 and Example 15. (Example 15 simply provides content to, and
employs, the SetGet class.)

Open up two ActionScript files and save one as SetGet.as and the other as
DoSetGet.as in the same folder. Then open a new Flash document file and save
it as DoSetGet.fla in the same folder as the two ActionScript files. Enter the
text and save the script in Example 14 to the SetGet.as file.
Example 14. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.TextField;

 public class SetGet extends Sprite
 {
 private static var _msg:String;
 public const CONMSG:String="CONSTANT MESSAGE";
 public function SetGet(myword:String):void
 {
 setWord(myword);
 var showStuff:TextField=new TextField();
 showStuff.text=getWord();
 this.addChild(showStuff);
 }

 private static function setWord(saywhat:String):void
 {
 _msg=saywhat;
 }

 private static function getWord():String
 {
 return _msg;
 }
 public function justTrace():void
 {
 trace(CONMSG);
 }
 }
}

 ActionScript 3.0 Programming 48

Type in the script from Example 15 to DoSetGet.as. In the Document class
window of the DoSetGet.fla file, type in DoSetGet and save them both in
the same folder as SetGet.as.
Example 15. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;

 public class DoSetGet extends Sprite
 {
 public function DoSetGet():void
 {
 var showOff:SetGet=new SetGet("Look at this!");
 this.addChild(showOff);
 showOff.x=100;
 showOff.y=100;
 showOff.justTrace();
 }
 }
}

By breaking down Example 14 into its different parts, you’ll find the key elements
of creating a class along with its methods and properties.
1. Package import. After the package keyword and open curly brace ({), which

must be included in the class declaration, the packages are imported. This script
only uses two classes, so that’s all that is imported:

 import flash.display.Sprite;
 import flash.text.TextField;

2. Class declaration. Here, a public class is declared along with the class name.
Since the class is an extension of the Sprite class, it inherits all Sprite
class properties and methods.

 public class SetGet extends Sprite
 {

Classes have four different attributes:

• internal: This is the default attribute. If no attribute is specified, the class is
created as internal. If a class is internal, it is visible to reference to
the class in the package of the current file. It operates something like a
private class.

• public: A public declaration means that the class is visible to references
everywhere. As you have seen in earlier examples, most of the declarations
use the public attribute.

• dynamic: A dynamic declaration opens up the class for adding properties
and methods to the class at run time.

 ActionScript 3.0 Programming 49

• final: Classes with a final attribute cannot be extended by another class.
3. Class constructor. The class constructor is a function that uses the class name

as the function’s name. This function runs whenever the class is instantiated.
Because it includes a parameter and because it is public, it’s possible to pass
values when invoking the class:

 public function SetGet(myword:String) :void
 {
 setWord(myword);
 var showStuff:TextField=new TextField();
 showStuff.text=getWord();
 this.addChild(showStuff);
 }

In the same way that classes have attributes, so do class properties and methods.
Since the class constructor is actually a function, let’s take this opportunity to
look at the different attributes associated with the variables, constants, and
functions within a class:

• public: The function, variable, or constant is visible to references
everywhere. You can see this in the constructor function and constant
declaration, shown here:

public function SetGet(myword:String)….
public const CONMSG:String="CONSTANT MESSAGE";

All Caps for CONSTANTS
Another convention you will find both in the built-in and user constants is the use
of all caps as labels for constants. In general, you want to avoid all caps in your
code because it’s more difficult to read. However, using all caps for constant labels
is an easy way to differentiate them from variables and it’s one of the few
exceptions to the “avoid all caps” rule.

• private: The function, variable, or constant is visible only to references of
the same class. One convention used to identify private variables or
constants is to begin the property label with an underscore. In Example 14,
you can see where the private attribute has been used. For instance, the
following is a private variable:
private static var _msg:String;

• static: The function, variable, or constant is not available in a subclass;
they’re not inherited. If you don’t want a property or method to be inherited
by a subclass, use the static attribute. For example, the following method
isn’t available to subclasses of the SetGet class:
private static function setWord(saywhat:String):void

 ActionScript 3.0 Programming 50

• protected: The function, variable, or constant is available only to its own
class and subclasses. For instance, the following is a protected variable:
protected var exclusive:String=”Only for our class and subclasses.”

• internal: This is the default attribute and if no attribute is placed in a
function, variable, or constant, it is internal. This makes the property or
method visible only to its own package. Both of the following examples are
identical because internal is the default:
function haveFun():void
internal function haveFun():void

4. Properties and methods. Example 14 has a setter/getter pair of private
static functions, a private property, and a single public method. The
private static elements are used in the class constructor function and are
executed as soon as the class instance is instantiated. However, the public
method, justTrace() needs to be invoked by attaching it to the instance as
shown in Example 15.

 showOff.justTrace();

You can add as many properties as you want to a class. The planning process,
discussed earlier, will help guide you as to how many properties and what type
you need.

Decision-Making: Conditional Structures
The conditional structures you’ll find in ActionScript 3.0 are like the ones in
previous versions of ActionScript. This section simply reviews the basic elements
of the different kinds of conditionals you’ll find with ActionScript 3.0.

The If condition
The if condition sets a single outcome based on whether the Boolean condition is
true or false. For example, suppose you’re building a site where you have a
single shipping cost for your product. However, if the customer purchases more
than $100 worth of products, the shipping is free; otherwise, $12.44 is added to the
total. Example 16 shows a class that uses a simple conditional statement to
determine whether shipping costs are added. Open a new ActionScript file and
copy the script in Example 16 and save the file as Condition.as.
Example 16. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class Condition
 {
 private var total:Number;
 private const SHIPCOST:Number=12.44;
 public function Condition(amount:Number):void
 {

 ActionScript 3.0 Programming 51

http://examples.oreilly.com/actionscript3qr

 total=amount;
 if(total < 100) {
 total += SHIPCOST;
 trace(total);
 }
 }
 }
}

To test the Condition class, place the script in Example 17 in an ActionScript
file and save it as ConTester.as in the same folder as Condition.as. (The
value 55, placed as a parameter value, is an arbitrary one that’s less than 100,
which is used to test the conditional.)
Example 17. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class ConTester extends Sprite
 {
 public function ConTester():void
 {
 var test:Condition=new Condition(55);
 }
 }
}

Open a new Flash document file, and in the Document class window enter
ConTester and test the file. Because 55 is less than 100, the shipping costs are
added and the output shows 67.44. If you enter 100 or more in the parameter, you
won’t get an output value.

The if…else and else if conditions
In testing Examples 16 and 17, you saw that if you have values greater than 100,
no output is displayed. By adding an else clause to Example 16, it’s possible to
have a response no matter what amount is purchased. Change Example 16 as
shown in Example 18.
Example 18. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class Condition
 {
 private var total:Number;
 private const SHIPCOST:Number=12.44;
 public function Condition(amount:Number):void
 {
 total=amount;
 if(total < 100) {
 total += SHIPCOST;
 trace(total);
 }
 else

 ActionScript 3.0 Programming 52

http://examples.oreilly.com/actionscript3qr

 {
 trace(total);
 }
 }
 }
}

Next, change the parameter value in Example 17 from 55 to 255 and test it. This
time, the value in the Output window is 255. That’s because no shipping costs
were added. The conditional statement determined the value to be no less than 100,
so the script turns to the else clause to output the total without adding the
shipping costs.
In situations where you have more than one condition you want to test, you can use
the else if statement. For example, suppose you create a video player
application and the user chooses from different FLV files to play. Depending on
which video the user selects, different choices need to be made. Example 19 shows
a class with multiple conditions. Enter the code in an ActionScript file and save it
as MulCondition.as.
Example 19. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class MulCondition
 {
 private var flvnow:String;
 public function MulCondition(flv:String):void
 {
 flvnow=flv;
 if (flvnow == "One")
 {
 trace("Play One.flv");
 } else if (flvnow == "Two")
 {
 trace("Play Two.flv");
 } else if (flvnow == "Three")
 {
 trace("Play Three.flv");
 } else
 {
 trace("Choice not recognized");
 }
 }
 }
}

Note that the first conditional is a simple if statement and that the last else
clause does not contain the else if statement. Basically, if the first condition
isn’t met, it brings in different conditions to test for. If none are recognized, the last
else clause executes. Example 20 shows an implementation in use. Save the code
as MulConTester.as and then open a new Flash document and save it as
MulConTester.fla in the same folder as MulCondition.as. Next, type in

 ActionScript 3.0 Programming 53

MulConTester in the Document class window of the MulConTester.fla
and test the file.
Example 20. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class MulConTester extends Sprite
 {
 public function MulConTester():void
 {
 var test:MulCondition=new MulCondition("Three");
 }
 }
}

When you test the file, you’ll see that the Output window displays, “Play
Three.flv.” Try entering the name, “Gone with the Silicon” in the FLV parameter
and see what happens. You will see that any entry other than “One”, “Two”, or
“Three” will result in the “Choice Not Recognized”.

Switch/Case structure
The final conditional structure is the switch/case statement. As an alternative
to using the else if condition, the switch/case statement is favored when
several different conditions must be handled, and in cases where you need to add
more conditions. Using the same example as was employed for the else if
statement, you can see the relative simplicity of the switch/case structure.
Examples 21 and 22 provide the script for creating a switch/case application.
Save both examples in the same folder, with Example 21 as SwitchCase.as
and Example 22 as SwitchCaseTester.as. Then in a Flash Document class
window, enter SwitchCaseTester and test the application.
Example 21. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class SwitchCase
 {
 private var flvnow:String;
 public function SwitchCase(flv:String):void
 {
 flvnow=flv;
 switch (flvnow)
 {
 case "One" :
 trace("Play One.flv");
 break;

 case "Two" :
 trace("Play Two.flv");
 break;

 ActionScript 3.0 Programming 54

 case "Three" :
 trace("Play Three.flv");
 break;

 default :
 trace("Choice not recognized");
 }
 }
 }
}

Example 22. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class SwitchCaseTester extends Sprite
 {
 public function SwitchCaseTester():void
 {
 var test:SwitchCase=new SwitchCase("Two");
 }
 }
}

When applying the SwitchCaseTester class in Example 22, you can see that
other than changing the name of the class reference and its selected string (“Two’
instead of “”), this example is identical to the script shown in Example 20.

Loops
Like the conditional statements, loop syntaxes are similar to earlier versions of
ActionScript. Generally, loops are the workhorses for repeating tasks. For
example, loops are used for parsing arrays and other objects where either a known
or unknown number of elements must be sought.
To look at the format and structure of the different loops, the following examples
are named for the loop type. The examples are set up in pairs or as standalone
examples that can be run by entering the class name in the Document class window
of a Flash document. To make the process simple, create a single Flash document
and save it as Loop.fla. Then enter the test class name for each of the examples
and test them. Save all of the following loop examples in the same folder as the
Loop.fla file, using the class name as the filename.

The for loop
The for loop is used to iterate through a known and finite number of repeated
operations. The operations for the loop begin at the opening curly brace and end
before the closing curly brace. The general format consists of a counter variable, an
end condition, and an increment/decrement variable separated by semi-colons as
shown in the following pseudocode:
for(counter=startValue; terminate condition; increment) {

 ActionScript 3.0 Programming 55

The following example, made up of two files, uses the length of an array as an end
condition:
for loop (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class ForLoop
 {
 private var loopsize:uint;
 private var counter:uint;
 public function ForLoop(gang:Array):void
 {
 loopsize=gang.length;
 for (counter=0; counter < loopsize; counter++)
 {
 trace(gang[counter]);
 }
 }
 }
}

for loop test (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class ForLoopTester extends Sprite
 {
 private var guys:Array=new Array("Larry","Mo","Curly");
 public function ForLoopTester():void
 {
 var test:ForLoop=new ForLoop(guys);
 }
 }
}

The for...in loop
The for...in loop is used to iterate through objects, including arrays. The
structure is made up of a variable to store the elements in a named object:
for(storeVar in someObject) {…

The loop is zero-based, in that the first element is the zero-property or zero-
element of the object. The following example iterates through an array. Note how
the abstract structure in the initial class is implemented concretely in the test class.
for...in (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class ForInLoop
 {
 public function ForInLoop(prop:Object):void
 {
 for (var p:Object in prop)
 {
 trace((Number(p)+1) +". "+ prop[p]);

 ActionScript 3.0 Programming 56

 }
 }
 }
}

for..in test (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class ForInLoopTester extends Sprite
 {
 private var mypack:Array=new Array("Delia","WillDe","Bill");
 public function ForInLoopTester():void
 {
 var test:ForInLoop=new ForInLoop(mypack);
 }
 }
}

The for each...in loop
In addition to what the for...in loop does, the for each...in loop iterates
through collections, including property values and XML and XMList object
properties. It uses the following format:
for each(someObject in otherObject) {...

The following example pair is set up to use any kind of object, illustrating its
actual use with an array.
for each in (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class ForEachInLoop
 {
 public function ForEachInLoop(group:Object) :void
 {
 for each (var thingy:Object in group)
 {
 trace(thingy);
 }
 }
 }
}

for each in test (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class ForEachInLoopTester extends Sprite
 {
 private var internet:Array=new Array("PHP","Perl","C#","ColdFusion");

 public function ForEachInLoopTester():void
 {
 var test:ForEachInLoop=new ForEachInLoop(internet);
 }

 ActionScript 3.0 Programming 57

 }
}

The while loop
The while loop has a test condition at the beginning of the structure followed by
the operations after the first curly brace. It uses the following format:
while(condition) {…

If the condition is false in the first iteration, no operation is run. This kind of
loop is good in situations where you don’t want anything to happen if the loop
condition is false at the outset. In the following example, you can directly enter
the class name in the Document class window without having to create a test class:
while loop (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class WhileLoop extends Sprite
 {
 private static var counter:Number=10;
 public function WhileLoop():void
 {
 while (counter > 0)
 {
 trace(counter);
 counter--;
 }
 trace("Blast off!");
 }
 }
}

The do...while loop
The key difference between the while and do...while loop is that the test
condition comes after the first operation. So, even if the test condition is initially
false, the do...while loop executes at least one operation. It has the
following format:
do { operation } while(testCondition)

The next example can be tested by entering the class name in the Document class
window of the test Flash document:
do...while loop (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;

 public class DoWhile extends Sprite
 {
 private var parseme:String="Albert Einstein";
 private var counter:uint=parseme.length;

 ActionScript 3.0 Programming 58

 private const WHOLE:uint=parseme.length;
 private var tempstr:String;
 private var albert:String="";

 public function DoWhile():void
 {
 do
 {
 tempstr=parseme.charAt(WHOLE-counter);
 albert+= tempstr;
 trace(tempstr);
 counter--;
 } while (tempstr != " ");
 trace(albert);
 }
 }
}

Object-Oriented Programming
One of my favorite books on object-oriented programming (OOP) books is
Alexander Nakhimovsky’s and Tom Myers’ JavaScript Objects: Object Use and
Data Manipulation with JavaScript (Wrox, 1998). I like it because the authors are
smart, and they’re not trying to prove how smart they are because they know OOP.
What’s more, they show how OOP can be applied to JavaScript, a weakly typed,
interpreted language. Coming from a couple of Colgate University computer
science professors accustomed to programming in languages like C++ and Java,
this perspective and stance caught my attention more than the same such issued by
someone who just happens to like JavaScript. The clear implication is that you
don’t need an OOP language to apply OOP principles. In fact, OOP is as much an
approach to programming as it is the built-in structures of a language.
Another point made by Nakhimovsky and Myers was that in the future (post-
1998), more non-programmers would be writing programs. In other words, more
people without a computer science or computer engineering degree would be
hacking code—literally. The prediction back in 1998 accurately portrays most
ActionScript programmers; starting with just a few statements, operators, and
commands, ActionScript has grown to a full-fledged OOP language in
ActionScript 3.0. Still, though, most who write ActionScript programs aren’t
programmers with CS degrees. Nakhimovsky and Myers were not lamenting the
fact that non-programmers would be programming, but rather pointing out that if
you’re going to program, you can do a better job and enjoy it more by using the
principles of OOP.

 ActionScript 3.0 Programming 59

Why OOP?
If you root around in the origins of OOP, you will find that, among other reasons,
OOP was developed as an approach to programming because it provides real-
world analogies. That is, the developers (those who write code) of OOP wanted to
make programming easier. For those who think of OOP as convoluted and a more
difficult way of programming, consider the fact that OOP’s creators were running
into difficulties that were extremely hard to solve using procedural programming
methods. (Procedural programming is a method of writing one procedure after
another in a linear manner.) OOP’s developers came up with the idea of objects (or
the object analogy), which have different properties and methods (characteristics
and actions). For example, I have a dog (an object) who has a personality (a
property), a tail (another property) and he barks (an action) at the various critters
that pass through our yard in the middle of the night. All of his doggy parts work in
concert to produce the appearance and behavior he exhibits.
By the same token, I have a Flash application that I use for playing (method)
selected videos (property). It also records (method), appends (method), and pauses
(method) the video (property). It has a text window (object) where the user types in
what she wants to see and hear (property). Instructions (property) tell the user what
information she has to enter.
In addition to making programming easier, OOP was developed to handle more
complex programs, especially those with interaction between the program and
other elements, such as users, other program elements, and data. Internally, OOP’s
organization is easier for the compiler to handle and the program runs more
efficiently.
So the answer to the question of “Why OOP?” is that your programming gets
easier as you develop more complex structures, and your application will run more
efficiently and effectively. Thus, you will enjoy programming more. What’s not to
like? Figure 14 shows a simplified OOP structure.

 ActionScript 3.0 Programming 60

Figure 14. Classes are Abstract Representations of Objects (Instances)

ActionScript 3.0 and OOP
Probably the most important features of ActionScript and OOP are not visible.
ActionScript 2.0 (and earlier versions) could be organized and executed using OOP
principles; however, the actual compilation and execution of the code did not take
advantage of OOP structures. ActionScript 3.0 does.

OOP Fundamentals
This next section steps through the basic elements of object-oriented programming.
Everything is quite basic and is meant as a starting point for further exploration.
The examples highlight how ActionScript 3.0 relates to these different OOP
elements. For OOP novices, this start is meant as an invitation to explore object-
oriented programming and become at least a nodding acquaintance. Experienced
OOP developers will get a glimpse of how ActionScript 3.0 is similar to and
different from other OOP languages they may have used previously.

 ActionScript 3.0 Programming 61

Class organization
Whether you’re seasoned at OOP or a relative ActionScript newbie, chances are
that you’ve worked with classes, even if you didn’t realize it. Classes in
ActionScript are abstract diagrams of a set of properties and methods. In this
document, you’ve seen several examples of both built-in and user-generated
classes and their properties and methods. For example, the following lines display
an instance of the String class (Pedro), a property of the String class
(length), and a String class method (slice).
var Pedro:String="Vote for Pedro";
var perimetro:uint = Pedro.length;
var cordonnuevo:String = Pedro.slice(0,perimetro-10);
trace(cordonnuevo);

To create your own OOP class, you’ll need an abstract plan for what you want the
class to do. For instance, you might want a plan for how to generate messages
entered by users. To hold that message, you’ll need a variable, which is one of the
classe’s properties. To deliver the message, you’ll need a function, which is one of
the classe’s methods. Like the property, the method is abstract. It doesn’t place the
message into a text field or pass it to another variable, it simply returns the
message. Example 23 creates a class that satisfies the plan’s criteria to create and
deliver messages. It includes commented elements of a complete OOP class:
Example 23. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class Sample
 {
 // This is a property
 private var goodProperty:String;
 // This is a constructor method
 public function Sample():void
 {
 }
 // This is a method
 public function goodShow():String
 {
 return goodProperty;
 }
 // This is a method
 public function setProp(msg:String):void
 {
 goodProperty=msg;
 }
 }
}

The Sample class is an abstraction of a simple plan to return a text string.
Sample has a single string property (goodProperty), a constructor method, a
method to set the property value (setProp), and a method to return the string
property (goodShow). Remember, the constructor method has the same name as

 ActionScript 3.0 Programming 62

the class and is used to instantiate the class. In this example, the constructor class
doesn’t have any content, so nothing happens when an instance (object) of the
class is created.
To create an instance of the abstract class, another class (often named Main), is
used to assign content for the abstract class and display the contents assigned to the
properties, as shown in Example 24.
Example 24. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 public class TestSample extends Sprite
 {
 public function TestSample() {
 var textUp:TextField=new TextField();
 var test:Sample=new Sample();
 test.setProp("Hi Class");
 textUp.text=test.goodShow();
 this.addChild(textUp);
 textUp.x=100;
 textUp.y=100;
 }
 }
}

As you can see, the first aspect of writing a good OOP program is to use both built-
in and user-created classes that contain properties and methods that map out what
your plan needs.

They’re All Properties
When reading books and articles about OOP, you will find that the word properties
often refers to both properties and methods. While properties are variables, and
methods are functions, grouping them as “properties” is a bit less awkward when
discussing objects in general. After all, an object is made up of parts, which is the
important feature, and to refer to both content features (properties) and action
features (methods) in the same vein doesn’t really distract from that fact.

Inheritance
In the context of OOP, inheritance refers to a class’s ability to pass on its
properties and methods to another class. When one class extends another class
(called subclassing), the subclass inherits all of the class’s non-private properties.
Example 25 extends the Sample class created in Example 23. In Example 23, the
Sample class contained one property, goodProperty, and two methods,
setProp and goodShow. By extending the Sample class to
ExtendedSample (Example 25), the ExtendedSample inherits setProp,

 ActionScript 3.0 Programming 63

goodProperty and goodShow. It can also add more methods and properties of
its own. Example 25 adds a numeric property and a function that returns the
numeric property.
Example 25. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class ExtendSample extends Sample
 {
 //This is an added property
 public var numProperty:Number;
 //This is a constructor method
 public function ExtendSample():void
 {
 }
 //This is an added method
 public function goodNum():Number
 {
 return numProperty;
 }
 }
}

To see inheritance at work, Example 26 instantiates the ExtendSample class.
Both methods and the property inherited from Sample and those created in the
ExtendSample class are assigned values and targets and are output on-screen.
Example 26. (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 import flash.text.TextField;
 public class TestExtendedSample extends Sprite
 {
 public function TestExtendedSample()
 {
 var textUp:TextField=new TextField();
 textUp.width=150;
 textUp.height=15;
 var test:ExtendSample=new ExtendSample();
 test.goodProperty="Half price = only $";
 test.numProperty=42;
 test.numProperty/= 2;
 textUp.text=test.goodShow() + test.goodNum();
 this.addChild(textUp);
 textUp.x=100;
 textUp.y=100;
 }
 }
}

As with inheritance in family trees, you’ll find more complexities than meet the
eye. However, the main point here is that characteristics can be inherited from one
class to another.

 ActionScript 3.0 Programming 64

Abstraction and encapsulation
While different concepts, discussing abstraction and encapsulation together, helps
to understand both.
Abstraction refers to defining characteristics of an object without specifying the
contents of that object. Example 23 is a class that has abstract characteristics in the
form of the goodProperty property, the setProp, and goodShow methods:

• All we know about goodProperty is that it’s a string, but we don’t know the
content of that string.

• Likewise, we know that goodShow returns a string, but how and where that
string goes is up to its implementation.

• The setProp method allows some string to be set, but it leaves that up to the
implementation.

Imagine an abstraction in the same way that a window is an abstraction. We all
understand the abstract concept of a window, and we also know that a window can
be anything from a large plate glass window in a department store to a stained
glass window in a cathedral; even a porthole on a ship. Likewise, we can use the
abstract term dog to refer to implementations that range from a Chihuahua to a
Greater Swiss Mountain Dog. However, the abstraction is clear enough that we can
differentiate one abstraction from another. For example, our abstraction of window
should differentiate it from the abstraction for a door. Likewise, our abstraction of
dog should be different from an abstraction of a cat. So while abstractions don’t
provide the particular content, they are specific enough to distinguish one
abstraction from another.
To appreciate encapsulation, let’s go back to why OOP was developed in the first
place. Using procedural methods often caused one property and its values to get
tangled up with others. As programs became larger, this problem increased
exponentially. By encapsulating properties, changes can be made to that property
without accidentally making changes where you don’t want them to occur. Both
abstraction and encapsulation are techniques used to take a big problem and break
it down into manageable parts. At the same time, they afford greater flexibility to
your code so that if you want to expand or change your program, you can do so
without having to start all over again. What’s more, you can reuse the parts
(classes) in wholly different programs. For example, once you program an
extension of the SimpleButton class, you don’t want to rewrite the code every
time you create a new application that needs a button. Thanks to abstraction,
however, you can implement the button with the specific characteristics you want
for your new application. At the same time, the encapsulated elements help to keep

 ActionScript 3.0 Programming 65

the new implementation clean and clear by not allowing changes in the properties
to cause unwanted changes in the new implementation.

Getters/Accessors
One way to enforce encapsulation is to use getters (also called accessors). A getter
is a method that gets information about an object (it provides access to that
information). Getters can be restricted by using private methods. If a method is
private, it can only be accessed by the class itself, so there’s no way for an outside
object to get to it. In Example 23, the getter method is goodShow, but it is a
public method, so it isn’t as restrictive. However, if you look at Example 14,
you’ll see that the getWord method is private and is only implemented
within the class. As a result, the only way to get to the property in Example 14 is
through the class constructor. That isn’t very flexible or helpful. (Example 14’s
purpose is to illustrate a class and its internal processes.)
Generally, though, getters are public methods, which allow changes to be
made, as shown in Example 24. In the implementation of a class, private
getters certainly enforce encapsulation, but they don’t allow the flexibility often
needed with getters.

Setters/Mutators
Besides getting information about an object’s properties, a property’s values often
have to be changed. To change an object’s information while enforcing
encapsulation, setters (also called mutators) are used. Public methods that do
nothing more than assign values are setters, as with the setProp method shown
in Example 23. When the class is implemented in Example 24, you can see how
the setProp method is used to assign a concrete value. Note, though, that it
assigns a value to a private property encapsulated in the class definition.

 ActionScript 3.0 Programming 66

Getters and Setters with get and set
You can also use the ActionScript 3.0 get and set statements to create your
getters and setters. The methods resulting from using these statements allow you to
call information very much like a property—without using parentheses. For
example, if you establish your getters and setters as:
public function get flv():String {
 return flvTitle;
}
public function set flv(fileName:String):void {
 flvTitle= fileName;
}

You would access them using the format:
someInstance.flv= "flyByWire .flv " //Setter
trace(someInstance.flv); //This is how the getter works

As you can see, they look more like properties than methods, but they are actually
methods. The get and set statements were not used in the examples because they
may have been mistaken for properties. However, they are methods, and once you
get used to their format, you may prefer their use in creating your getters and
setters.

Polymorphism
In the most general sense, polymorphism refers to the different implementations of
an abstract class. For example, consider again the concept of a window as an
abstraction. You could subclass Windows to department store window or
cathedral window. Both classes implement methods from the Windows class, but
they do it in different ways. Instead of having a single (mono) implementation, you
have several (poly) implementations (or forms) that the initial concept of window
can take. The following pseudo-code illustrates this behavior:
public class Windows {
 public function Windows() {}
 public function putInFrame() {
 // Do frame stuff }
 public function putInGlass()
 // Do glass stuff }
}

By subclassing the Windows class into DepartmentStore and Cathedral
classes, the same function names are inherited from the Window class, but they
will have different functionality. In the DepartmentStore implementation, the
putInFrame method will have one big window frame to put in; the department
store and the Cathedral implementation will have lots of little frames for the
stained glass windows. Likewise, the putInGlass method is different in both as

 ActionScript 3.0 Programming 67

well. One implementation has one big piece of clear glass, and the other has lots of
little pieces of colored glass.
The concept of polymorphism is an important one for object-oriented
programming, and it is one best appreciated when you run into it in one of your
own applications. Personally, I found the concept clearer when using interfaces,
which is the next topic of discussion.
Interfaces
An interface is something like an abstract class. Basically, an interface (not to be
confused with a graphical user interface, which is something altogether different)
is a set of methods differentiated by name and data type, but which don’t contain
anything. Interfaces are often likened to contracts, where everyone is in agreement
that they’ll stick with the terms set up in an interface. The terms of the “contracts”
are an agreement that the same data types and arguments in the interface will be
used in the implementation of the interface.
Keeping with the window analogy, two methods were used to build a window:
putInFrame and putInGlass. Here’s what an ActionScript 3.0 interface
would look like:
Interface (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 interface Windows
 {
 function putInFrame():void;
 function putInGlass():void;
 }
}

Basically, the contract says, “If you’re going to implement this interface, use these
two functions with no returns (void).” This is a new level of abstraction, but with
this, you can create windows for anything from a shed to the Empire State
Building.
To use the interface, you need to implement it. You’ll need two interfaces: one for
the department store and another for the cathedral, as shown here:
Department Store (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 class DepartmentStore implements Windows
 {
 public function DepartmentStore()
 {
 trace("==Department Store==");
 }
 public function putInFrame():void
 {

 ActionScript 3.0 Programming 68

 trace("Put in one big frame.");
 }
 public function putInGlass():void
 {
 trace("Put in one big clear piece of glass.");
 }
 }
}

The constructor function simply adds a message to the Output window using a
trace() statement so you can tell it’s the department store implementation.
Then, both of the methods in the interfaces are written with trace() statements
to indicate a unique implementation of the method. Compare that with the
cathedral implementation, shown here:
Cathedral (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 class Cathedral implements Windows
 {
 public function Cathedral()
 {
 trace("==Cathedral==");
 }
 public function putInFrame():void
 {
 trace("Put in lots of little frames made of leaded glass.");
 }
 public function putInGlass():void
 {
 trace("Put in lots of different colored glass.");
 }
 }
}

Following the interface “contract” analogy, the cathedral implementation stuck
with the method names and return structure, but put in wholly different trace()
statements. (Instead of trace() statements, any other type of statements,
functions, or anything else consistent with the interface would be acceptable as
well.)
To compare the two different implementations of the Windows interface, a test
class instantiates both implementations in juxtaposition. This way, you can see
how the same methods were implemented differently.
Test Windows (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class DoWindows extends Sprite
 {
 var myDepartmentStore:Windows;
 var myCathedral:Windows;
 public function DoWindows()
 {

 ActionScript 3.0 Programming 69

 myDepartmentStore=new DepartmentStore();
 myDepartmentStore.putInFrame();
 myDepartmentStore.putInGlass();

 myCathedral=new Cathedral();
 myCathedral.putInFrame();
 myCathedral.putInGlass();
 }
 }
}

The output window shows the following:
==Department Store==
Put in one big frame.
Put in one big clear piece of glass.
==Cathedral==
Put in lots of little frames made of lead.
Put in lots of different colored glass.

As the output shows, the same methods result in entirely different messages.
However, it’s clear that the messages are consistent with their different contexts.
This is polymorphism at work.

Design Patterns
As a final item in this document, I’d like to introduce design patterns. Since
ActionScript 3.0 is a true object-oriented programming language, you might as
well go to the next level of OOP and become familiar with what most professional
programmers already know and use (or would like to know and use).
Design patterns were developed by and for professional programmers as a set of
coding practices to optimize the quality of OO programs. They constitute a
framework for solving recurring software development problems. Developed and
tested over years of work by programmers, they were codified and presented as a
set of programming guidelines in a 1995 work entitled, Design Patterns: Elements
of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. (Better known as “The Gang of Four”—or just
GoF—the coauthors’ epithet has become synonymous with design patterns.)
For those just learning about OOP, design patterns serve as a model for getting
OOP right, albeit at a relatively advanced level. And now that ActionScript 3.0 is a
serious OOP language, any effort to acquire OOP skills should also include a set of
best practices. In this short introduction, we’ll take a look at a simple design
pattern called a Singleton and explain its purpose.

The DP quick and dirty primer
Like OOP itself, design patterns offer a strategy for approaching recurring issues
that all programmers face. If you think of design patterns as clothing patterns, you

 ActionScript 3.0 Programming 70

can better understand how to approach both design patterns and the idea of
programming architecture.
Imagine that you’re a clothing manufacturer, and you have a set of different
patterns for different types of clothing. A summer collection that includes patterns
for shorts, short-sleeved shirts, light materials, swimwear, and bright summer
colors. The same is true for fall, winter, and spring clothing patterns. Likewise, you
will likely have patterns for informal and formal occasions as well as patterns for
everything from outdoor camping to school clothes for children.
With each seasonal change, you are faced with the recurring challenge of coming
up with clothes for the next season. Instead of treating each season anew, you pull
out patterns for that season. Fall season calls for more woolen patterns with long
sleeves, made for layered wear. Winter brings out heavier materials and designs
that will keep your customers warm in frigid temperatures.
It’s not rocket science to determine that once you’ve made a pattern for a certain
season, you might as well reuse it when the same season rolls around again the
following year. You need flexibility because styles change, but otherwise, you
know that summer patterns work best in the summer and winter patterns work best
in the winter.
The same is true with software design patterns. If you’ve spent time working out a
solid OOP solution to a programming problem, you can reuse it again and again
when the same problem rolls around.
The important feature of design patterns is that they address specific problems, yet
are flexible enough to deal with a wide variety of similar programming issues. At
the same time, the patterns are designed to optimize every aspect of good practices
in OOP. So, while they are shortcuts to solving complex, recurring problems, they
also represent good programming practices.

A design pattern example: The Singleton
In working with ActionScript 3.0, you will be working with classes and objects
implemented from a class. Sometimes you need to be sure that there’s only a single
instance of a class and yet global access to the class. For example, if you create an
application that plays MP3 files, you want to ensure that only a single instance of
the class that plays the MP3 files is going to be instantiated at a time. Otherwise,
multiple instances could lead to multiple MP3 files playing at the same time. Also,
you want a single global access to the player so that you can select what you want
and be sure that only one tune at a time is played.
The following Singleton example is an abstract one, but it serves to illustrate a
Singleton structure, allowing only one instance to be instantiated at a time. It more
or less follows a “classic” Singleton design in the use of a private constructor

 ActionScript 3.0 Programming 71

function and a test of previous instantiation. The only problem is that in
ActionScript 3.0, constructor functions have to be public. To get around this,
you can use an internal class created outside of the class, or even package
definition.
In the class constructor, if you use the internal class object as an argument, it
serves to work like a private constructor function. A higher level of security is
achieved by keeping the internal class outside both the class and
package definition, but you can place the internal class outside the class
definition and still keep it inside the package definition.

In the Singleton example, the internal class at the bottom of the script is
outside the package, so it isn’t visible outside the source file. (Also note that the
internal attribute is missing in the function PrivateClass. That’s because
the internal attribute is the default and is automatically placed there.) By using
the private class instance in the constructor, there’s no way that a Singleton
can be instantiated outside of the class. Only by using the getInstance()
accessor can an instance be instantiated.
The logic of the Singleton code is both simple and profound. The constructor
function opens with a getInstance() function that checks to see if a Singleton
instance exists. If no such instance is currently instantiated, it creates one;
otherwise it falls through and leaves a message that an extant Singleton already
exists. The script then falls through to the return statement, which returns either
the new Singleton instance it just created or one that already exists. In either case,
only a single instance of the Singleton class is allowed. Type in the following
example in an ActionScript file and save it as Singleton.as.
Singleton Example (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 public class Singleton
 {
 private static var _instance:Singleton;
 public function Singleton(pvt:PrivateClass) {
 }
 public static function getInstance():Singleton
 {
 if(Singleton._instance == null)
 {
 Singleton._instance=new Singleton(new PrivateClass());
 trace("Singleton instantiated");
 }
 else
 {
 trace("Sorry, we already have a Singleton instantiated")
 }
 return Singleton._instance;

 ActionScript 3.0 Programming 72

 }
 }
}
class PrivateClass
{
 public function PrivateClass() {
 trace("Private class is up");
 }
}

To test the Singleton, you’ll need a test that attempts to instantiate more than a
single instance of the class. Open a new ActionScript file and type in the Test
Singleton script and save the file as SingletonTest.as in the same folder as
the Singleton.as file.
Test Singleton (download this code sample at http://examples.oreilly.com/actionscript3qr)
package
{
 import flash.display.Sprite;
 public class SingletonTest extends Sprite
 {
 public function SingletonTest()
 {
 var initialSingleton:Singleton = Singleton.getInstance();
 var subsequentSingleton:Singleton = Singleton.getInstance();
 }
 }
}

Finally, open a new Flash document and save it as SingletonTest.fla in the
same folder as the Singleton.as folder. In the Document class window, type
in SingletonTest and test the script. You should see the following output:
Private class is up
Singleton instantiated
Sorry, we already have a Singleton instantiated

The pseudo-private class has been included as evidenced by the first line of output.
This indicates that the trick to instantiate the Singleton as a private class
worked. Then, the first attempt to create a Singleton instance works fine as well.
However, a second attempt to do the same thing indicates that it was unsuccessful.
That’s exactly what a Singleton is supposed to do!
The point of all of this is not that it’s difficult or even especially brainy to use
design patterns. Rather, you can use the architecture in the design patterns to create
good OOP. Like good algorithms that have been used over and over since the dawn
of computer programming, good design patterns provide effective models for
programming.
To learn more about design patterns, besides the original canon by the Gang of
Four, you can’t find a better book on design patterns than the highly readable Head
First Design Patterns by Eric and Elisabeth Freeman (O’Reilly, 2004). Even
though all of the examples are written in Java, going through it will give you a

 ActionScript 3.0 Programming 73

thorough grounding in design patterns by some very smart people. Also, the
forthcoming book ActionScript 3.0 Design Patterns by William B. Sanders and
Chandima Cumaranatunge (O’Reilly, 2007) is designed to help you understand
object-oriented programming through design patterns.

Next Step for Object-Oriented Programming
At its heart, OOP makes a lot of sense, and conceptually, it’s very clear. However,
as with everything else, the devil is in the details. With short programs, knocked
out for a particular task of no great shakes, it’s easy to ignore OOP and just pound
out what you need. Also, to do OOP right, you need to plan. I don’t mean to just
think up a few data types you might need, but to sit down and think about your
project—even if it’s just a short one. And, yes, learning OOP does take some
effort, and you will lose your old sequential programming habits in the process,
and that’s a good thing. However, the rewards are the joy of solving computing
problems at a whole new level, becoming a better programmer, and in the
satisfaction of doing a job well.
To get started with OOP, get a good book that covers OOP. Ideally, get one that’s
written for ActionScript 3.0; even one written for an earlier version of ActionScript
is encouraged if you can’t find a current one. Essential ActionScript 3.0 by Colin
Moock and ActionScript 3.0 Cookbook by Joey Lott, Darron Schall, and Keith
Peters are both good choices for seeing how to create object-oriented programs in
ActionScript 3.0. If you have an OOP book written for another language, such as
Java, C++, JavaScript, or C#, that can be helpful as well. In any case, you need to
look at something more than was provided here. Take this as a starting point,
because now more than ever, you have a version of ActionScript that can truly
create OOP structures and take advantage of OOP and design pattern
programming.

 ActionScript 3.0 Programming 74

	Packages and Classes
	Finding the Right Package and Class

	Jumping into Display Programming
	Loading and Arranging Graphics
	Loading and Displaying Text

	Working with Movie Clips and Buttons
	MovieClip Objects
	Buttons

	Basic Structures
	Data Types
	Making Classes
	Decision-Making: Conditional Structures
	Loops

	Object-Oriented Programming
	Why OOP?
	ActionScript 3.0 and OOP
	OOP Fundamentals
	Design Patterns
	Next Step for Object-Oriented Programming

